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Dislocation Multiplication
by Diffusion Assisted
Bardeen-Herring Climb
Sources

TEM in-situ heating

Ti-48Al-2Cr (at.%)

_820 K, 150 min




Titanium Aluminide Alloys

Intermetallic compounds
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Degradation of Lamellar Microstructures

Reduction of
interface energy

Recrystallization ﬁ

Phase
transformation




Solid State Transformations

1600

P Transformation pathway depends 3 1400
on alloy composition 2.
)

sesves (at.%)e 0L OL+Y > Oy +Y % 1200
o
Q
=

(0001),,[I{111},, <11-20>,,<1-10> @ 1000

800

60
at.% Al

» o—a+y transformation is sluggish
non-equilibrium phase composition with excess o, phase

provides driving force for phase transformation and dynamic recrystallization



Phase Transformation During High-Temperature Creep
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Diffusion Mechanism to Attain Phase Equilibria
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Phase Transformation
and Recrystallization
during

Long-Term Creep

Ti-48Al-2Cr (at. %
T=700 °C,
o=110MPa,
t=13400 h

£=0.46 %




Phase Transformation
and Recrystallization
during

Long-Term Creep

Ti-48AI-2Cr (at. %)
T=700 °C,

c=110 Mpa,
t=13400 h

£=0.46 %
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Climb of interfacial
dislocations during in situ
heating inside the TEM

Ti-48AI-2Cr (at. %)




Phase Transformation during Long-Term Creep,
Ti-48AI-2Cr (at. %),T=700 °C, o=110Mpa,t=13,400 h,s=0.46 %
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Static Strain Ageing

Kinetics:
Strain age yield point
becomes saturated
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Estimation of Activation Ernergy

Arrhenius plot:

Time necessary to achieve a certain
degree of completeness of dislocation
pinning combined with related
temperature.

Activation energy: Q,=0.58 - 0.77 eV

not consistent with classical diffusion
mechanisms

self diffusion energy Q.,=2.6 eV

pipe diffusion Q.= 0.5 Q4
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Static Strain Ageing: Effect of Alloy Composition
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» Strain ageing phenomena most pronounced in Ti-rich Alloys
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Diffusion Asisted by
Antisite Defects

Vacancies propagate by
two nearest-neighbour
jumps, without disturbing
the long-range order

Energetics:

(Herzig and Mishin, 2000)

P Qg (Tiy)=0.712 eV
Qase (Aly;)=1.323eV

Strain ageing:
Q.= 0.58-0.77 eV
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Conclusions

Diffusion plays a major and complex role in the mechanical
behaviour of intermetallic titanium aluminide alloys.

Off-stochiometric deviations are compensated by the formation
of antisite defects on the respective sub-lattice.

This chemical disorder effectively supports diffusion at
moderately high temperatures of (0.3-0.5)T,...

The operation of this mechanism leads to significant structural
changes upon long-term service and to dislocation locking by
the formation of ordered defect atmospheres.
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